
THE PERFORMANCE ANALYSIS OF LINUX NETWORKING – PACKET
RECEIVING

W. Wu*, M. Crawford†, Fermilab MS-368, Batavia, IL 60510, USA

Abstract
The computing models for HEP experiments are

becoming ever more globally distributed and grid-based,
both for technical reasons (e.g., to place computational
and data resources near each other and the demand) and
for strategic reasons (e.g., to leverage technology
investments). To support such computing models, the
network and end systems (computing and storage) face
unprecedented challenges. One of the biggest challenges
is to transfer physics data sets – now in the multi-petabyte
(1015 bytes) range and expected to grow to exabytes
within a decade – reliably and efficiently among facilities
and computation centers scattered around the world. Both
the network and end systems should be able to provide
the capabilities to support high bandwidth, sustained, end-
to-end data transmission. Recent trends in technology are
showing that although the raw transmission speeds used
in networks are increasing rapidly, the rate of
advancement of microprocessor technology has slowed
down over the last couple of years. Therefore, network
protocol-processing overheads have risen sharply in
comparison with the time spent in packet transmission,
resulting in the degraded throughput for networked
applications. More and more, it is the network end
system, instead of the network, that is responsible for
degraded performance of network applications. In this
paper, the Linux system’s packet receive process is

studied from NIC to application. We develop a
mathematical model to characterize the Linux packet
receive process. Key factors that affect Linux systems’
network performance are analyzed.

PACKET RECEIVING PROCESS
Figure 1 demonstrates generally the trip of a packet

from its ingress into a Linux end system to its final
delivery to the application [1][2][3]. In general, the
packet’s trip can be classified into three stages:
• Packet is transferred from network interface card
(NIC) to ring buffer. The NIC and device driver manage
and controls this process.
• Packet is transferred from ring buffer to a socket
receive buffer, driven by a software interrupt request
(softirq) [2][4]. The kernel protocol stack handles this
stage.
• Packet data is copied from the socket receive buffer
to the application, which we will term the Data
Receiving Process.

In the following sections, we detail these three stages. It

will be assumed that the medium is Ethernet-like and that
the driver uses the Linux “New API” (NAPI) to reduce
interrupt load on the CPU.

NIC
Hardware

Network
Application

Traffic SinkRing Buffer
Socket RCV

BufferSoftIrq
Process

SchedulerTrafficSource

IP
Processing

TCP/UDP
Processing

SOCK RCV
SYS_CALLDMA

Kernel Protocol Stack Data Receiving ProcessNIC & Device Driver

Figure 1 Linux Networking Subsystem: Packet Receiving Process

NIC and Device Driver Processing
The Linux kernel uses a structure sk_buff [2] to hold

any single packet up to the MTU (Maximum Transfer
Unit) of the network. The device driver maintains a “ring”
of these packet buffers, known as a “ring buffer,” for
packet reception (and a separate ring for transmission). A
ring buffer consists of a device- and driver-dependent
number of packet descriptors. To be able to receive a
packet, a packet descriptor should be in “ready” state,
which means it has been initialized and pre-allocated with
an empty sk_buff memory-mapped into I/O space for
DMA. When a packet comes, one of the ready packet

descriptors in the reception ring will be used, the packet
will be transferred into the pre-allocated sk_buff, and the
descriptor will be marked as used. A used packet
descriptor should be reinitialized and refilled with an
empty sk_buff as soon as possible for further incoming
packets. If a packet arrives and there is no ready packet
descriptor in the reception ring, it will be discarded.

Figure 2 shows a general packet receiving process at
NIC and device driver level. When a packet is received, it
is transferred into main memory and an interrupt is raised
only after the packet is accessible to the kernel. When
CPU responds to the interrupt, the driver’s interrupt
handler is called, which schedules a softirq. It puts a
reference to the device into the poll queue of the
interrupted CPU and disables the NIC’s receive interrupt
until the packets in its ring buffer are processed.

* wenji@fnal.gov
† crawdad@fnal.gov

...
Packet Packet

Packet

Packet
Descriptor

Ring Buffer

...

DMA

1
24 3

8

7

6
5

...

NIC Interrupt
Handler

The softirq is serviced shortly afterward. The CPU
polls each device in its poll queue to get the received
packets from the ring buffer by calling the poll method of
the device driver. In dev->poll(), each received packet is
passed upwards for further processing. After a packet is
dequeued from its receiving ring buffer, its corresponding
packet descriptor needs to be reinitialized and refilled.

Kernel Protocol Stack
• IP Processing

The IP protocol receive function ip_rcv() is called when
an IP packet is dequeued. It verifies packet integrity and
invokes any netfilter hooks, then calls ip_rcv_finish(),
which routes the packet over the network or delivers it
locally by ip_local_deliver(). There, the higher layer
protocol is determined and the corresponding handler
function is invoked: tcp_v4_rcv() and udp_rcv() are two
examples.
• TCP Processing

After header sanity checks, the TCP code looks up the
socket associated with the packet. Each socket has a lock
to protect its data from un-synchronized modification. If
the socket is locked, the packet is placed on the backlog
queue and all further processing is deferred. If the socket
is not locked, and its Data Receiving Process is waiting
for data, the packet is added to the socket’s prequeue and
will be processed in batch in the process context, instead
of the interrupt context [4] If the prequeue mechanism
does not accept the packet, then the socket is not locked
and no process is waiting for input on it. The packet must
be processed immediately by a call to tcp_v4_do_rcv(),
which is also called to drain the backlog queue and
prequeue. It is through this function that packets are
acknowledged, and window and round-trip time estimates
are updated. Here, we focus on the data packet
processing.

The packet is handled on the so-called fast path if it is
exactly the next packet expected in a received sequence
with no gaps. If, in addition, the socket belongs to the
currently active process and the data fits into the
application-supplied buffer, the data will be copied
directly from the sk_buff to user memory. This direct
copy can also occur on the slow path if the packet fills the
beginning of the first hole in the received stream. On
either path, if the data cannot be copied directly to user

space, it goes onto the receive queue. Figure shows the
various queues the packet may occupy, including the out-
of-sequence queue, which holds packets received out of
order until the gaps preceding them are filled. Unlike the
other three queues, packets in the receive queue are
guaranteed in order, acked, and without gaps. Packets in
out-of-sequence queue are moved to the receive queue
when additional packets fill the preceding holes in the
data stream.

As previously mentioned, the backlog and prequeue are
drained in the process context (except in the case of
prequeue overflow). The socket’s data receiving process
obtains data from the socket through socket-related
receive system calls. For TCP, all such system calls result
in the final calling of tcp_recvmsg(), which is the top end
of the TCP transport receive mechanism. As shown in
Figure 4, tcp_recvmsg() first checks the receive queue.
Since packets in the receive queue are guaranteed in
order, acknowledged, and without gaps, their data is
copied to user space directly. Then tcp_recvmsg() will
process the prequeue and backlog queue, respectively, if

Raised softirq

Poll_queue (per CPU)

NIC1

SoftIrq

x

N
IC

1

Netif_rx_schedule()

Hardware
Interrupt

Application Traffic Sink

Ringbuffer

Backlog

IP
Processing

Sock
Locked?

Y

Receiving
Task exists?

Y

PrequeueN

tcp_v4_do_rcv()

N

InSequence

Y

N

N

N

Out of Sequence
Queue

Receive
Queue

TCP
Processing

NIC
Hardware

Traffic Src

DMA

Copy to iovec?

Copy to iovec?

Y

Y

Fast path?

Y

N

check

1

2

3

4

dev->poll

Net_rx_action

5

6
Higher Layer Processing

alloc_skb()

Refill

 Slow path

Figure 2 NIC & Device Driver Packet Receiving

Figure 3 TCP Processing - Interrupt context

Copy to iovecReceive Queue
Empty?

Y

N

Prequeue
Empty?

Backlog
Empty?

Y

sk_backlog_rcv()

iovec

retrun / sk_wait_data()

User Space

Kernel

Socketentry

Application

data

tcp_recvmsg()

sys_call

Y

N

N

Figure 4 TCP Processing – Process Context

they are not empty and space in the user buffer remains.
tcp_v4_do_rcv() is called for both of these queues.
Afterward, processing is performed similar to that in the
interrupt context.
• UDP Processing

When a UDP packet arrives from the IP layer through
ip_local_deliver(), it is passed on to udp_rcv().
udp_rcv()’s mission is to verify the integrity of the UDP
packet and to queue (udp_queue_rcv_skb()) one of more
copies for delivery to multicast and broadcast sockets and
exactly one copy to unicast sockets. When queuing the
received packet in the receive queue of the matching
socket, if there is insufficient space in the receive buffer
quota of the socket, the packet may be discarded. Data
within the Socket’s receive buffer are ready for delivery
to the user space.

Data Receiving Process
Packet data is finally copied from the socket’s receive

buffer to user space by data receiving process through
socket-related receive system calls. The receiving process
supplies a memory address and number of bytes to be
transferred, either in a struct iovec, or as two parameters
gathered into such a struct by the kernel. All the TCP
socket-related receive system calls result in the final
calling of tcp_recvmsg(), which will copy packet data
from socket’s buffers (receive queue, prequeue, backlog
queue) through iovec. For UDP, all the socket-related
receiving system calls result in the final calling of
udp_recvmsg(), which is the front end to the UDP
transport receive mechanism. When udp_recvmsg() is
called, data inside receive queue is copied through iovec
to user space directly.

PERFORMANCE ANALYSIS
Based on the packet receiving process described in

previous sections, the packet receiving process can be
described by the model in Figure 5. In the mathematical
model, the NIC and device driver receiving process can
be represented by the token bucket algorithm [5],
accepting a packet if a ready packet descriptor is available
in the ring buffer and discarding it if not. The rest of the
packet receiving processes are modelled as queuing
processes [6].

We assume several incoming data streams are arriving
and define the following symbols (all rates are in packets
per time unit):
• , : Offered, accepted total packet rate)(tRT)(' tRT

• , : Offered, accepted packet rate for data
stream i

)(tRi)(' tRi

• : Refill rate for used packet descriptors)(tRr

• : The total number of packet descriptors in the
receive ring buffer;
D

• : Number of packet descriptors in ready state)(tA
• minτ : The minimum time interval between a packet’s

ingress into the system and its first being serviced by
a softirq;

• : Kernel protocol packet service rate)(tRs

• : Softirq packet service rate for stream i)(tRsi

• : Data receiving process packet service rate
for stream i

)(tRdi

• : Socket i’s receive buffer size (Bytes);)(tBi

• : Socket i’s receive buffer quota (Bytes); iQB
The Token Bucket algorithm is a surprisingly good fit

to the NIC and device driver receiving process. In our
model, the receive ring buffer is represented as a token
bucket with a depth of tokens. Each packet descriptor
in the ready state is a token, granting the ability to accept
one incoming packet. The tokens are regenerated only
when used packet descriptors are reinitialized and refilled.
If there is no token in the bucket, incoming packets will
be discarded.

D

The offered and accepted packet rates are related by

RT ' (t) =
RT (t), A(t) > 0

0, A(t) = 0
⎧
⎨
⎩

 (1)

So to admit packets without discarding, the system
should satisfy

0>∀t , (2) 0)(>tA
It can be derived that

∫∫ +−=
t

r

t

T dRdRDtA
00)()()(ττττ , (3) 0>∀t

Since is a function of both and , it cannot be
controlled directly. In order to avoid or minimize packet
drops, the system needs to raise its and/or .

'TR TR)(tA

)(tRr D
Rr(t) depends on the following two factors: (1) Protocol
packet service rate Rs(t) . To raise the packet service
rate, approaches to reducing processing in the kernel have
been proposed. For example, TCP/IP Offloading
technology [7] aims to free the CPU of some packet
processing by shifting tasks to the NIC or storage device.
Also, when the system is in memory pressure, allocation
of new packet buffers is prone to failure and a used packet
descriptor cannot be refilled. Absent memory shortage, it
can be assumed that Rs(t) = Rr (t).

Ring Buffer

Refill Rate Rr

T

T

Socket i
RCV Buffer

3 12

RT Rs Rdi

Total Number of
Packet Descriptors

D

Number of Packet
Descriptors in Ready State

A

D is a design parameter of the NIC and driver. A larger
 implies increased cost. D should meet the following

condition to avoid packet drops:
D

 D ≥ τ min * Rmax (4)

2 Packet
Discard

To other sockets

3 1

Ri

RT�

Ri�

Rsi

Figure 3 Packet Receiving Process - Model

The rest of the packet receiving processes are modeled as
queuing processes. In the model, socket i’s receive buffer
is a queue of size . The packets are put into the

queue by softirq with a rate of , and are moved out
of the queue by the data receiving process with a rate
of

iQB
)(tRsi

Rdi(t) .

Cycle n

Running
expired

0 t1 t2

Running
expired

t3 t4

Cycle n+1

Figure 4 Data receiving process running model

For stream i, based on the packet receiving process,
)()(tRtR ii ≤ and)()(tRtR ssi ≤ (5)

Similarity, it can be derived that:

∫∫ −=
t

di

t

sii dRdRtB
00

)()()(ττττ (6)

In transport layer protocol operations Bi(t) plays a
key role. For UDP, when Bi(t) ≥ QBi , all the incoming
packets for socket i is discarded and all the protocol
processing effort spent the dropped packet is wasted.
From both the network end system and network
application’s perspective, this is a condition to avoid.

TCP does not drop packets at the socket level as UDP
does when the receive buffer is full. Instead, it advertises
QBi − Bi(t) to the sender to perform flow control.
Instead, when a TCP socket’s receive buffer is near full,
the small window QBi − Bi(t) advertised to the sender
side will throttle the data sending rate, resulting in lower
TCP throughput [8].

From both UDP and TCP’s perspectives, it is desirable
to raise the value of QBi − Bi(t) , which is:

∫∫ +−
t

di

t

sii dRdRQB
00

)()(ττττ (7)

Clearly it is not desirable to reduce Rsi(t) to achieve
the goal. But the goal can be achieved by raising QB
and/or

i
Rdi(t) . On most operating systems, QB is

configurable, subject to system memory limits.
i

Rdi(t) depends on the system load and the data
receiving process’ nice value. Linux is a preemptive
multi-processing operating system. Processes are
scheduled to run in prioritized round robin fashion. Each
process’ time slice is calculated based on its nice value.
When a process’ time slice runs out, the process is
considered expired. A process with no time slice is not
eligible to run until all other processes have exhausted
their time slice. At that point, the time slices for all
process are recalculated [4]. Figure 6 shows the data
receiving process’ running model.

Let’s assume the data receiving process’ packet service
rate is constant D when the process is running. For the
cycle n in Figure 6, we have:

⎩
⎨
⎧

<<
<<

=
21

1

,0
0,

)(
ttt
tt

tRdi

D
 (8)

Therefore, to raise the rate of Rdi(t) , the only way is to
increase data receiving process’ CPU share: either lower
data receiving process’ nice value (negative values are
favored over positive), or reduce the system load to
increase the process’ running frequency.

OBSERVATIONS
We have instrumented the Linux network stack to
snapshot the packet queues at regular intervals and record
their lengths in a memory area for later examination. We
were able to observe exhaustion of the ring buffer and the
consequent decrease in throughput, and the fluctuations in
packet processing under load. A more complete
presentation of the observational results will be published
elsewhere.

CONCLUSION
In this paper, the Linux system’s packet receiving

process is studied from NIC to application. Our
mathematical model of the process implies, and
instrumented observation support, that key factors
affecting Linux systems’ network performance include:
(1) The reception ring buffer in NIC and device driver as
a cause of packet drops. (2) The data receiving process’
CPU share gates TCP processing and queue servicing.

ACKNOWLEDGEMENTS
This work was supported by the U. S. Department of

Energy under contract DE-AC02-76CH03000. The
authors are grateful for the assistance of the Fermilab
Data Communications group in setting up a network
testbed.

REFERENCES

[1] M. Rio, et.al., "A Map of the Networking Code in

Linux Kernel 2.4.20", March 2004.
[2] K. Wehrle, et.al., The Linux Networking

Architecture – Design and Implementation of
Network Protocols in the Linux Kernel, Prentice-
Hall, ISBN 0-13-177720-3, 2005.

[3] www.kernel.org
[4] R. Love, Linux Kernel Development, Second

Edition, Novell Press, ISBN: 0672327201, 2005.
[5] A. Tanenbaum, Computer Networks, 3rd Edition,

Prentice-Hall, ISBN: 0133499456, 1996.
[6] A. Allen, Probability, Statistics, and Queueing

Theory with Computer Science Applications, 2nd
Edition, Academic Press, ISBN: 0-12-051051-0,
1990.

[7] G. Regnier, et.al., TCP onloading for data center
servers, Computer, Volume 37, Issue 11, Nov. 2004
Page(s):48 - 58

[8] Transmission Control Protocol, RFC 793, 1981

	THE PERFORMANCE ANALYSIS OF LINUX NETWORKING – PACKET RECEIVING
	PACKET RECEIVING PROCESS
	NIC and Device Driver Processing
	Kernel Protocol Stack
	Data Receiving Process

	PERFORMANCE ANALYSIS
	OBSERVATIONS
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

